On a family of linear recurrences

نویسندگان

چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Diophantine Equations Related with Linear Binary Recurrences

In this paper we find all solutions of four kinds of the Diophantine equations begin{equation*} ~x^{2}pm V_{t}xy-y^{2}pm x=0text{ and}~x^{2}pm V_{t}xy-y^{2}pm y=0, end{equation*}% for an odd number $t$, and, begin{equation*} ~x^{2}pm V_{t}xy+y^{2}-x=0text{ and}text{ }x^{2}pm V_{t}xy+y^{2}-y=0, end{equation*}% for an even number $t$, where $V_{n}$ is a generalized Lucas number. This pape...

متن کامل

On the Solution of Linear Mean Recurrences

Motivated by questions of algorithm analysis, we provide several distinct approaches to determining convergence and limit values for a class of linear iterations.

متن کامل

On a Family of Three Term Nonlinear Integer Recurrences

It is not hard to see (cf. [1, Section 4]) that Ed ⊆ Dd ⊆ Ed. Thus the problem that remains is to find out for which parameters r ∈ ∂Ed do we have r ∈ Dd. This question was addressed for the two-dimensional case in [3, Section 2]. It is easy to see that D2 is (apart from its boundary) an isosceles triangle. In [3, Section 2] ∂D2 was characterized for two sides of this triangle. To characterize ...

متن کامل

A New Family of Somos-like Recurrences

We exhibit a three parameter infinite family of quadratic recurrence relations inspired by the well known Somos sequences. For one infinite subfamily we prove that the recurrence generates an infinite sequence of integers by showing that the same sequence is generated by a linear recurrence (with suitable initial conditions). We also give conjectured relations among the three parameters so that...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Journal of Physics: Conference Series

سال: 2013

ISSN: 1742-6596

DOI: 10.1088/1742-6596/410/1/012057